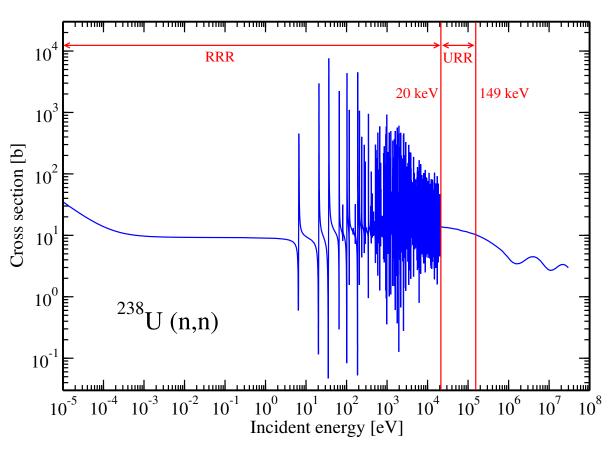
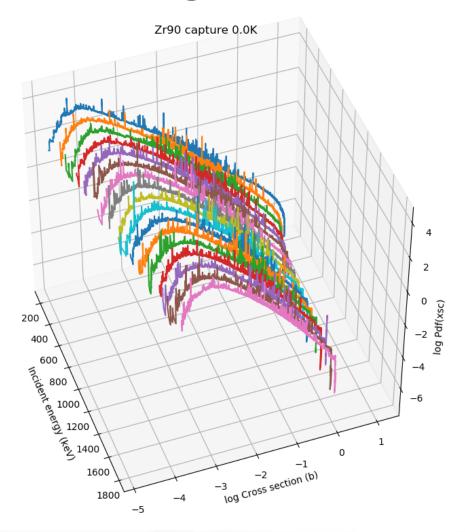
Alternate approach for Calculating URR PDFs

Matteo Vorabbi¹, Dave Brown¹, Caleb Mattoon², Godfree Gert², Bret Beck² ¹BNL, ²LLNL


NDAG, Dec 3 2020

Unresolved resonance region


- Thermalization of neutrons in ²³⁸U by elastic scattering requires ~ 2200 collisions
- Energy loss by elastic scattering in the URR amounts to ~ 240 collisions
- ~ 11% of collisions occur in the URR
- This is something we should care about

Unresolved resonance region

- Resonances are too narrow to resolve experimentally
- We cannot determine individual resonance parameters:{x}
- We can only determine averages of parameters: x
- Enough to determine the cross section PDF

Generation of the PDF

- Resonance ladders technique
 - Monte Carlo generates resonance
 - Reconstruct cross sections
 - Compute the one-realization PDF by numerically evaluating the delta function integral

$$P(\{\sigma_c\}|\{\overline{\Gamma}_c\}, \overline{D}, E) = \int \prod_i dE_i \prod_c d\Gamma_{c,i} P(\{E_i, \{\Gamma_{c,i}\}\}|\overline{D}, \{\overline{\Gamma}_c\}, E) \times \delta(\sigma_c - \sigma_c(\{E_i, \{\Gamma_{c,i}\}\}))$$

- Accumulate the PDF
- Repeat steps until converged
- The structure in the plot can be seen as a sampling error

Pre-processing codes

 PDFs are computed with pre-processing codes such as FUDGE, NJOY...

Multi-purpose codes used to convert tabulated data into an interpolable form

Common feature: calculation of the Doppler-broadened cross sections

Required to solve the linearized Boltzmann equation in the laboratory system

Doppler broadening

 In neutron transport equation we define an effective temperature dependent cross section

$$V\sigma(V, T, \mathbf{x}) = \int d\{\mathbf{x}\} P(\{\mathbf{x}\}|\mathbf{x}) \int_{[V_t, V_r > 0]} \left[V_r \sigma(V_r, 0, \{\mathbf{x}\}) \right] P(\overline{V}_t) d\overline{V}_t$$

Integration over the resonance parameters

$$V\sigma(V, T, \mathbf{x}) = \int_{[V_t, V_r > 0]} \left[V_r \sigma(V_r, 0, \mathbf{x}) \right] P(\overline{V}_t) d\overline{V}_t$$

• In the limit $T \to 0$ we have $\sigma(V, T \to 0, \mathbf{x}) \to \sigma(V, 0, \mathbf{x})$

Doppler broadening

 In neutron transport equation we define an effective temperature dependent cross section

$$\begin{aligned} & \text{V}\sigma(\mathbf{\widehat{V}},T,\mathbf{x}) = \int d\{\mathbf{x}\} \boxed{P(\{\mathbf{x}\}|\mathbf{x})} \int_{[\mathbf{V}_t,\mathbf{V}_r>0]} \left[\mathbf{V}_r \boxed{\sigma(\mathbf{V}_r,0,\{\mathbf{x}\})} \boxed{P(\overline{V}_t)\,d\overline{V}_t} \right] \end{aligned} \\ & \text{Projectile} \\ & \text{Speed} \end{aligned} \qquad \begin{aligned} & \text{Resonance} \\ & \text{parameter} \\ & \text{possible} \end{aligned} \qquad \begin{aligned} & \text{Cross section at zero temperature} \end{aligned} \qquad \end{aligned} \\ & \text{Target-nucleus velocity distribution} \end{aligned}$$

Integration over the resonance parameters

$$V\sigma(V, T, \mathbf{x}) = \int_{[V_t, V_r > 0]} \left[V_r \sigma(V_r, 0, \mathbf{x}) \right] P(\overline{V}_t) d\overline{V}_t$$

• In the limit $T \to 0$ we have $\sigma(V, T \to 0, \mathbf{x}) \to \sigma(V, 0, \mathbf{x})$

Definition of the PDF

 In analogy with the PDF for an ideal case (delta function) we define the following PDF

$$P(\widetilde{\sigma}|\mathbf{V}, T, \sigma, \mathbf{x}) \equiv \int d\{\mathbf{x}\} P(\{\mathbf{x}\}|\mathbf{x}) \int_{[\mathbf{V_t}, \mathbf{V_r} > 0]} d\overline{V}_{\mathbf{t}} P(\overline{V}_{\mathbf{t}}) \, \delta\left(\widetilde{\sigma} - \frac{\mathbf{V_r}}{\mathbf{V}} \, \sigma(\mathbf{V_r}, 0, \{\mathbf{x}\})\right)$$

- Properties
 - The expectation value of the variable $\widetilde{\sigma}$ is

$$E(\widetilde{\sigma}) = \int_0^\infty d\widetilde{\sigma} \ \widetilde{\sigma} \ P(\widetilde{\sigma}|V, T, \sigma, \mathbf{x}) = \sigma(V, T, \mathbf{x})$$

- The $T \to 0$ has the right behavior

$$\lim_{T\to 0} P(\widetilde{\sigma}|V, T, \sigma, \mathbf{x}) = \int d\{\mathbf{x}\} P(\{\mathbf{x}\}|\mathbf{x}) \,\delta(\widetilde{\sigma} - \sigma(V, 0, \{\mathbf{x}\}))$$

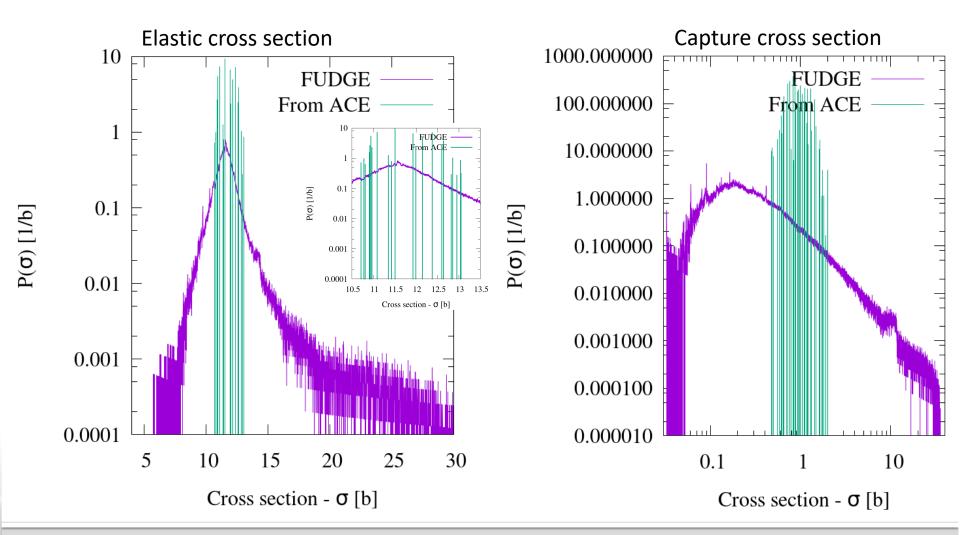
Combining probabilities (Bayesian approach)

 We can exploit the properties of our PDF to define the following PDF at zero temperature

$$P(\widetilde{\sigma}|V, 0, \sigma, \mathbf{x}) \equiv \int d\{\mathbf{x}\} P(\{\mathbf{x}\}|\mathbf{x}) \,\delta(\widetilde{\sigma} - \sigma(V, 0, \{\mathbf{x}\}))$$

With this definition we can express our PDF as

$$P(\widetilde{\sigma}|\mathbf{V}, T, \sigma, \mathbf{x}) = \int_{[\mathbf{V_t}, \mathbf{V_r} > 0]} d\overline{V_t} P(\overline{V_t}) P(\widetilde{\sigma}|\mathbf{V_r}, 0, \sigma, \mathbf{x})$$


New computational scheme of the PDF

PDF computed with FUDGE

FUDGE pdf vs ACE probability tables

Understanding the variance problem

Mean value

$$E(\widetilde{\sigma}) = \int_0^\infty d\widetilde{\sigma} \ \widetilde{\sigma} \ P(\widetilde{\sigma}|V, T, \sigma, \mathbf{x}) = \sigma(V, T, \mathbf{x})$$
$$\sigma(V, T, \mathbf{x}) = E_{\text{NJOY}}(\widetilde{\sigma}) = E_{\text{FUDGE}}(\widetilde{\sigma})$$

Variance

$$\operatorname{var}\left[\sigma(\mathbf{V}, T, \mathbf{x})\right] = \operatorname{E}\left(\widetilde{\sigma}^{2}\right) - \operatorname{E}^{2}(\widetilde{\sigma})$$

The difference is in the second moment

We show the difference with analytic models

Understanding the variance problem

 Working on analytic models to show the difference between FUDGE and NJOY (1/V and const. cross sections)

- For analytical models (no dependence on {x}), the NJOY
 PDF is always a delta function and the variance is always zero
- A finite and positive variance is obtained from FUDGE
- Can this explain the variance difference?

Combining theory and experiment

We can combine there and experiment

$$P_{\text{th-exp}}(\widetilde{\sigma}|E, 0, \sigma, \mathbf{x}) = P_{\text{th}}(\widetilde{\sigma}|E, 0, \sigma, \mathbf{x}) P_{\text{exp}}(\widetilde{\sigma}|E)$$

The experimental PDF can be obtained from standards

$$P_{\text{exp}}(\widetilde{\sigma}|E) = \mathcal{N}\left(\widetilde{\sigma}, \sigma(E), \left(\Delta\sigma(E)\right)^2\right)$$

where

$$\sigma(E) = \sum_{i=1}^{k} \sigma_i B_i(E) \qquad (\Delta \sigma(E))^2 = \sum_{i,j=1}^{k} B_i(E) \Sigma_{ij} B_j(E)$$

Summary & outlook

- A theoretical (Bayesian) approach is more advisable for the PDF calculation in the URR (combine probabilities, speed up numerical calculations...)
- The theoretical variance obtained so far is still too large: in benchmarking, the results obtained with NJOY are closer to the right values than those obtained with FUDGE
- Future efforts will be devoted to test our algorithm to shrink the variance

